Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis.

نویسندگان

  • Etienne Grienenberger
  • Sung Soo Kim
  • Benjamin Lallemand
  • Pierrette Geoffroy
  • Dimitri Heintz
  • Clarice de Azevedo Souza
  • Thierry Heitz
  • Carl J Douglas
  • Michel Legrand
چکیده

The precise structure of the sporopollenin polymer that is the major constituent of exine, the outer pollen wall, remains poorly understood. Recently, characterization of Arabidopsis thaliana genes and corresponding enzymes involved in exine formation has demonstrated the role of fatty acid derivatives as precursors of sporopollenin building units. Fatty acyl-CoA esters synthesized by ACYL-COA SYNTHETASE5 (ACOS5) are condensed with malonyl-CoA by POLYKETIDE SYNTHASE A (PKSA) and PKSB to yield α-pyrone polyketides required for exine formation. Here, we show that two closely related genes encoding oxidoreductases are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the reductases displayed a range of pollen exine layer defects, depending on the mutant allele. Phylogenetic studies indicated that the two reductases belong to a large reductase/dehydrogenase gene family and cluster in two distinct clades with putative orthologs from several angiosperm lineages and the moss Physcomitrella patens. Recombinant proteins produced in bacteria reduced the carbonyl function of tetraketide α-pyrone compounds synthesized by PKSA/B, and the proteins were therefore named TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 (previously called DRL1 and CCRL6, respectively). TKPR activities, together with those of ACOS5 and PKSA/B, identify a conserved biosynthetic pathway leading to hydroxylated α-pyrone compounds that were previously unknown to be sporopollenin precursors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building Triketide α-Pyrone-Producing Yeast Platform Using Heterologous Expression of Sporopollenin Biosynthetic Genes.

Sporopollenin is a poorly characterized mixed aliphatic and aromatic polymer with ester and ether linkages. Recent studies have reported that α-pyrone polyketide compounds generated by Arabidopsis thaliana, polyketide synthase A (PKSA) and tetraketide α-pyrone reductase 1 (TKPR1), are previously unknown sporopollenin precursors. Here, the yeast Saccharomyces cerevisiae was introduced to test po...

متن کامل

Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells.

The sporopollenin polymer is the major constituent of exine, the outer pollen wall. Recently fatty acid derivatives have been shown to be the precursors of sporopollenin building units. ACYL-COA SYNTHETASE, POLYKETIDE SYNTHASE A (PKSA) and PKSB, TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 have been demonstrated to be involved in sporopollenin biosynthesis in Arabidopsis (Arabidopsis thali...

متن کامل

LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana.

Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpr...

متن کامل

Sporopollenin Biosynthetic Enzymes Interact and Constitute a Metabolon Localized to the Endoplasmic Reticulum of Tapetum Cells[W]

The sporopollenin polymer is the major constituent of exine, the outer pollen wall. Recently fatty acid derivatives have been shown to be the precursors of sporopollenin building units. ACYL-COA SYNTHETASE, POLYKETIDE SYNTHASE A (PKSA) and PKSB, TETRAKETIDE a-PYRONE REDUCTASE1 (TKPR1) and TKPR2 have been demonstrated to be involved in sporopollenin biosynthesis in Arabidopsis (Arabidopsis thali...

متن کامل

A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis.

Acyl-CoA Synthetase (ACOS) genes are related to 4-coumarate:CoA ligase (4CL) but have distinct functions. The Arabidopsis thaliana ACOS5 protein is in clade A of Arabidopsis ACOS proteins, the clade most closely related to 4CL proteins. This clade contains putative nonperoxisomal ACOS enzymes conserved in several angiosperm lineages and in the moss Physcomitrella patens. Although its function i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2010